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Linear Form
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❑ 𝑓: 𝑅𝑛 → 𝑅 means that 𝑓 is a function that maps real 𝑛-vectors to real numbers

❑ 𝑓(𝑥) is the value of function 𝑓 at 𝑥 (𝑥 is referred to as the argument of the function).

❑ 𝑓 𝑥 = (𝑥1, 𝑥2, … , 𝑥𝑛): argument

What are Linear Functions?
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Definition

❑ Additivity: For any 𝑛-vector 𝑥 and 𝑦, 𝑓 𝑥 + 𝑦 = 𝑓 𝑥 + 𝑓(𝑦)

❑ Homogeneity: For any 𝑛-vector 𝑥 and any scalar 𝛼 ∈ 𝑅: 𝑓 𝛼𝑥 = 𝛼𝑓(𝑥)

A function 𝑓: 𝑅𝑛 → 𝑅 is linear if it satisfies the following two properties:



Superposition property: 

CE282: Linear Algebra Hamid R. Rabiee & Maryam Ramezani 5

Definition

Superposition property:

𝑓 𝛼𝑥 + 𝛽𝑦 = 𝛼𝑓 𝑥 + 𝛽𝑓(𝑦)

Note

❑ A function that satisfies the superposition property is called linear



Homogeneity and Additivity
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Definition

❑ Additivity: 

For any 𝑛-vector 𝑥 and 𝑦, 𝑓 𝑥 + 𝑦 = 𝑓 𝑥 + 𝑓(𝑦)

❑ Homogeneity: 

For any 𝑛-vector 𝑥 and any scalar 𝛼 ∈ 𝑅: 𝑓 𝛼𝑥 = 𝛼𝑓(𝑥)

Counterexample: 

𝑓 𝑥 = 2𝑥



❑ If a function f is linear, superposition extends to linear 
combinations of any number of vectors:

What are Linear Functions?
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𝑓 𝛼1𝑥1 +⋯+ 𝛼𝑘𝑥𝑘 = 𝛼1𝑓 𝑥1 +⋯+ 𝛼𝑘𝑓(𝑥𝑘)



Inner product is Linear Function?
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Proof?
𝑓 𝑥 = 𝑎𝑇𝑥 = 𝑎1𝑥1 + 𝑎2𝑥2 +⋯+ 𝑎𝑛𝑥𝑛

Theorem

A function defined as the inner product of its argument with some fixed vector 
is linear.



What are Linear Functions?
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Theorem

If a function is linear, then it can be expressed as the inner product of its 
argument with some fixed vector.

Proof?



What are Linear Functions?
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Theorem

The representation of a linear function 𝑓 as 𝑓 𝑥 = 𝑎𝑇𝑥 is unique, which means 
that there is only one vector 𝑎 for which 𝑓 𝑥 = 𝑎𝑇𝑥 holds for all 𝑥.

Proof?



Linear Form Examples
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Example

• Is average a linear function?
• Is maximum a linear function? 



Bilinear Form

CE282: Linear Algebra Hamid R. Rabiee & Maryam Ramezani 12



Bilinear Form over a real vector space
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Definition

Suppose 𝑉 and 𝑊 are vector spaces over the same field 𝔽. Then a 
function 𝑓: 𝑉 ×𝑊 → 𝔽 is called a bilinear form if it satisfies the 
following properties:

a) It is linear in its first argument:
i. 𝑓 𝐯𝟏 + 𝐯𝟐, 𝐰 = 𝑓 𝐯𝟏, 𝐰 + 𝑓(𝐯𝟐, 𝐰) and
ii. 𝑓 𝑐𝐯𝟏, 𝐰 = 𝑐𝑓 𝐯𝟏, 𝐰 for all 𝑐 ∈ 𝔽, 𝐯𝟏, 𝐯𝟐 ∈ 𝑉, and 𝐰 ∈ 𝑊.

b) It is linear in its second argument:
i. 𝑓 𝐯,𝐰𝟏 +𝐰𝟐 = 𝑓 𝐯,𝐰𝟏 + 𝑓(𝐯,𝐰𝟐) and
ii. 𝑓 𝐯, 𝑐𝐰𝟏 = 𝑐𝑓 𝐯,𝐰𝟏 for all 𝑐 ∈ 𝔽, 𝐯 ∈ 𝑉, and 𝐰𝟏, 𝐰𝟐 ∈ 𝑊.



Bilinear Form
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Note

Let 𝑉 be a vector space over a field 𝔽. Then the dual of 𝑉, denoted by 𝑉∗, is 
the vector space consisting of all linear forms on 𝑉. 

Example

Let 𝑉 be a vector space over a field 𝔽. Show that the function 
𝑔: 𝑉∗ × 𝑉 → 𝔽 defined by

𝑔 𝑓, 𝐯 = 𝑓(𝐯) for all 𝑓 ∈ 𝑉∗, 𝐯 ∈ 𝑉
is a bilinear form.



Positive Definite Bilinear Form

Definition

A bilinear form function 𝑓: 𝑉 × 𝑉 → 𝔽 over a real vector space 𝑉 is called positive 
definite if for all 𝑣 ∈ 𝑉, 𝑣 ≠ 0:

𝑓 𝑣, 𝑣 > 0

Linear Algebra for ML Maryam Ramezani 15

Example

Which one is a positive definite bilinear form?

❑ 𝑓 𝑥, 𝑦 = 𝑥1𝑦1 − 2𝑥1𝑦2 − 2𝑥2𝑦1 + 5𝑥2𝑦2
❑ 𝑓 𝑥, 𝑦 = 𝑥1𝑦1 + 2𝑥1𝑦2 + 2𝑥2𝑦1 + 3𝑥2𝑦2
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Symmetric Bilinear Form

Definition

A bilinear form function 𝑓: 𝑉 × 𝑉 → 𝔽 over a real vector space 𝑉 is called symmetric if 
for all 𝑣,𝑤 ∈ 𝑉:

𝑓 𝑣,𝑤 = 𝑓 𝑤, 𝑣
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Bilinear Form arises from a matrix

Theorem

Every bilinear form function 𝑓: 𝑉 × 𝑉 → 𝔽 over a real vector space 𝑉 arises from a 
matrix for all 𝑣,𝑤 ∈ 𝑉:

𝑓 𝑣,𝑤 = 𝑣𝑇𝐴𝑤
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Proof?
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Associated Matrices
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Definition

If 𝑉 is a finite-dimensional vector space, 𝐵 = {𝑏1, … , 𝑏𝑛} is a basis of 𝑉, and 
𝑓: 𝑉 × 𝑉 → 𝔽 be a  bilinear form function the associated matrix A of 𝑓 with respect to 𝐵
is the matrix 𝑓 𝐵 ∈ 𝔽𝑛×𝑛 whose (𝑖, 𝑗)-entry is the value 𝑓(𝑏𝑖 , 𝑏𝑗). 

𝑓 𝑣,𝑤 = 𝑣𝑇𝐴𝑤 = 𝑣𝑇 𝑓 𝐵𝑤



Associated Matrices
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Example

For the bilinear form 𝑓
𝑎
𝑏
,
𝑐
𝑑

= 2𝑎𝑐 + 4𝑎𝑑 − 𝑏𝑐 on 𝔽2, find 𝑓 𝐵 for basis 𝐵 = {
2
1
,
−1
4

}

and 𝑓 𝑃 for basis P= {
1
0
,
0
1
}

The associated matrix changes if we use a different basis.

Note



Bilinear Form 
Over Complex Vector Space
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Bilinear Form over a complex vector space
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Definition

Suppose 𝑉 and 𝑊 are vector spaces over the same field ℂ. Then a 
function 𝑓: 𝑉 ×𝑊 → ℂ is called a bilinear form if it satisfies the 
following properties:

a) It is linear in its first argument:
i. 𝑓 𝐯𝟏 + 𝐯𝟐, 𝐰 = 𝑓 𝐯𝟏, 𝐰 + 𝑓(𝐯𝟐, 𝐰) and
ii. 𝑓 𝜆𝐯𝟏, 𝐰 = 𝜆𝑓 𝐯𝟏, 𝐰 for all   𝜆 ∈ ℂ, 𝐯𝟏, 𝐯𝟐 ∈ 𝑉, and 𝐰 ∈ 𝑊.

b) It is conjugate linear in its second argument:
i. 𝑓 𝐯,𝐰𝟏 +𝐰𝟐 = 𝑓 𝐯,𝐰𝟏 + 𝑓(𝐯,𝐰𝟐) and
ii. 𝑓 𝐯, 𝜆𝐰𝟏 = ҧ𝜆𝑓 𝐯,𝐰𝟏 for all 𝜆 ∈ ℂ, 𝐯 ∈ 𝑉, and 𝐰𝟏, 𝐰𝟐 ∈ 𝑊.



Bilinear forms (real vs complex vector space)
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Bilinear forms on ℝ𝒏 Bilinear forms on ℂ𝒏

Linear in the first variable Linear in the first variable

Linear in the second variable Conjugate linear in the second variable



Inner product
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❑ An inner product on 𝑉 is a function , : 𝑉 × 𝑉 → ℝ such that 
𝑣,𝑤 ∈ 𝑉, 𝑐 ∈ ℝ:

1. 𝑣, 𝑣 = 0 if and only if 𝑣 = 0.

2. 𝑤, 𝑣 = 𝑣,𝑤 .

3. 𝑢 + 𝑣,𝑤 = 𝑢,𝑤 + 𝑣,𝑤 for all u, 𝑣, 𝑤 ∈ 𝑉.

4. 𝑐𝑤, 𝑢 = 𝑐 𝑤, 𝑢 for all 𝑢, 𝑤 ∈ 𝑉 and 𝑐 ∈ ℝ.

5. 𝑣, 𝑣 ≥ 0 for all 𝑣 ∈ 𝑉.

Inner product over real vector space
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Definition

An inner product is a positive-definite symmetric bilinear form.  



Inner Product
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Why for bilinear form I wrote just two properties instead of four properties?

❑ Using properties (2) and (4) and again 2

𝑤, 𝑐𝑢 = 𝑐𝑢, 𝑤 = 𝑐 𝑢, 𝑤 = 𝑐 𝑤, 𝑢

❑ Using properties 2 , 3 and again (2)
𝑤, 𝑢 + 𝑣 = 𝑢 + 𝑣,𝑤 = 𝑢,𝑤 + 𝑣,𝑤 = 𝑤, 𝑢 + 𝑤, 𝑣

1. 𝑣, 𝑣 = 0 if and only if 𝑣 = 0.

2. 𝑤, 𝑣 = 𝑣, 𝑤 .

3. 𝑢 + 𝑣,𝑤 = 𝑢,𝑤 + 𝑣,𝑤 for all u, 𝑣, 𝑤 ∈ 𝑉.

4. 𝑐𝑤, 𝑢 = 𝑐 𝑤, 𝑢 for all 𝑢,𝑤 ∈ 𝑉 and 𝑐 ∈ ℝ.

5. 𝑣, 𝑣 ≥ 0 for all 𝑣 ∈ 𝑉.



Inner Products
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Note

❑ For 𝑣 ∈ 𝑉, 0, 𝑣 = 0, 𝑣, 0 =0.



General Inner product
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Definition

Suppose that 𝔽 = ℝ or 𝔽 = ℂ and that 𝑉 is a vector space 
over 𝔽. Then an inner product on 𝑉 is a function 
∙,∙ ∶ 𝑉 × 𝑉 → 𝔽 such that the following three properties 

hold for all 𝑐 ∈ 𝔽 and all 𝐯,𝐰, 𝐱 ∈ 𝑉:

a) 𝐯,𝐰 = 𝐰, 𝐯
b) ⟨v+𝑐𝑥,w⟩=⟨v,w⟩+𝑐⟨𝑥,w⟩
c) 𝐯, 𝐯 ≥ 0, with equality if and only if 𝐯 = 𝟎.

(conjugate symmetry)

(linearity)

(pos. definiteness)



Inner Products for vectors
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Note

❑ The standard inner product between vectors is: (𝑥, 𝑦 ∈ ℝ𝑛)

𝑥, 𝑦 = 𝑥𝑇𝑦 =෍ 𝑥𝑖𝑦𝑖

❑ The function ∙,∙ ∶ ℂ𝑛 × ℂ𝑛 → ℂ defined by

v,w = 𝑣∗w = σ𝑖=1
𝑛 ഥ𝑣𝑖 𝑤𝑖

for all v,w ∈ ℂ𝑛 is an inner product on ℂ𝑛.   
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Note

❑ The standard inner product between two matrices is: (𝑋, 𝑌 ∈ ℝ𝑚×𝑛)

𝑋, 𝑌 = 𝑡𝑟𝑎𝑐𝑒 𝑋𝑇𝑌 =෍

𝑖

෍

𝑗

𝑋𝑖𝑗𝑌𝑖𝑗

Example

𝑈 =
1 2
1 0

, 𝑉 =
1 −1
1 1

Inner Product for matrices



Inner Product for functions
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Note

❑ Let 𝑎 < 𝑏 be real numbers and let 𝐶 𝑎, 𝑏 be the vector space of continuous functions on the real 
interval [𝑎, 𝑏]. The function ∙,∙ ∶ 𝐶[𝑎, 𝑏] × 𝐶[𝑎, 𝑏] → ℝ defined by

𝑓, 𝑔 = 𝑎׬
𝑏
𝑓 𝑥 𝑔 𝑥 𝑑𝑥 for all 𝑓, 𝑔 ∈ 𝐶[𝑎, 𝑏]

is and inner product on 𝐶 𝑎, 𝑏 .



Inner Product for polynomials
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Note

❑ For 𝑝(𝑥) and 𝑞 𝑥 with at most degree 𝑛:

𝑝(𝑥), 𝑞(𝑥) = p 0 q 0 + p 1 q 1 +⋯+ p n q n

❑ For 𝑝(𝑥) and 𝑞 𝑥 : 𝑝(𝑥), 𝑞(𝑥) = p 0 q 0 + 1−׬
1
𝑝′𝑞′

❑ For 𝑝(𝑥) and 𝑞 𝑥 : 𝑝(𝑥), 𝑞(𝑥) = 0׬
∞
𝑝 𝑥 𝑞 𝑥 𝑒−𝑥𝑑𝑥



Inner product space
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Definition

An inner product space is a finite-dimensional real or complex vector 
space 𝑉 along with an inner product on 𝑉.

Euclidean Space Unitary Space
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