Inner Product Space

Linear Algebra
Department of Computer Engineering
Sharif University of Technology
Hamid R. Rabiee rabiee@sharif.edu
Maryam Ramezani maryam.ramezani@sharif.edu

Overview

Linear Form

Bilinear Form

Bilinear Form on Complex Vector Space

Inner Product

Inner Product Space

Linear Form

- $f: R^{n} \rightarrow R$ means that f is a function that maps real n-vectors to real numbers
- $f(x)$ is the value of function f at x (x is referred to as the argument of the function).
- $f(x)=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$: argument

Definition

A function $f: R^{n} \rightarrow R$ is linear if it satisfies the following two properties:
\square Additivity: For any n-vector x and $y, f(x+y)=f(x)+f(y)$
Homogeneity: For any n-vector x and any scalar $\alpha \in R: f(\alpha x)=\alpha f(x)$

Superposition property:

Definition
Superposition property:

$$
f(\alpha x+\beta y)=\alpha f(x)+\beta f(y)
$$

Note
\square A function that satisfies the superposition property is called linear

Homogeneity and Additivity

Definition

\square Additivity:
For any n-vector x and $y, f(x+y)=f(x)+f(y)$
\square Homogeneity:
For any n-vector x and any scalar $\alpha \in R: f(\alpha x)=\alpha f(x)$

Counterexample:
$f(x)=\sqrt{2} x$

- If a function f is linear, superposition extends to linear combinations of any number of vectors:

$$
f\left(\alpha_{1} x_{1}+\cdots+\alpha_{k} x_{k}\right)=\alpha_{1} f\left(x_{1}\right)+\cdots+\alpha_{k} f\left(x_{k}\right)
$$

Inner product is Linear Function?

Theorem

A function defined as the inner product of its argument with some fixed vector is linear.

Proof?

$$
f(x)=a^{T} x=a_{1} x_{1}+a_{2} x_{2}+\cdots+a_{n} x_{n}
$$

Theorem

If a function is linear, then it can be expressed as the inner product of its argument with some fixed vector.

Proof?

Theorem
The representation of a linear function f as $f(x)=a^{T} x$ is unique, which means that there is only one vector a for which $f(x)=a^{T} x$ holds for all x.

Proof?

Example

- Is average a linear function?
- Is maximum a linear function?

Bilinear Form

Definition

Suppose V and W are vector spaces over the same field \mathbb{F}. Then a function $f: V \times W \rightarrow \mathbb{F}$ is called a bilinear form if it satisfies the following properties:
a) It is linear in its first argument:
i. $f\left(\mathbf{v}_{\mathbf{1}}+\mathbf{v}_{\mathbf{2}}, \mathbf{w}\right)=f\left(\mathbf{v}_{\mathbf{1}}, \mathbf{w}\right)+f\left(\mathbf{v}_{\mathbf{2}}, \mathbf{w}\right)$ and
ii. $f\left(c \mathbf{v}_{\mathbf{1}}, \mathbf{w}\right)=c f\left(\mathbf{v}_{\mathbf{1}}, \mathbf{w}\right)$ for all $c \in \mathbb{F}, \mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}} \in V$, and $\mathbf{w} \in W$.
b) It is linear in its second argument:
i. $f\left(\mathbf{v}, \mathbf{w}_{\mathbf{1}}+\mathbf{w}_{\mathbf{2}}\right)=f\left(\mathbf{v}, \mathbf{w}_{\mathbf{1}}\right)+f\left(\mathbf{v}, \mathbf{w}_{\mathbf{2}}\right)$ and
ii. $f\left(\mathbf{v}, c \mathbf{w}_{\mathbf{1}}\right)=c f\left(\mathbf{v}, \mathbf{w}_{\mathbf{1}}\right)$ for all $c \in \mathbb{F}, \mathbf{v} \in V$, and $\mathbf{w}_{\mathbf{1}}, \mathbf{w}_{\mathbf{2}} \in W$.

Note

Let V be a vector space over a field \mathbb{F}. Then the dual of V, denoted by V^{*}, is the vector space consisting of all linear forms on V.

Example

Let V be a vector space over a field \mathbb{F}. Show that the function $g: V^{*} \times V \rightarrow \mathbb{F}$ defined by

$$
g(f, \mathbf{v})=f(\mathbf{v}) \text { for all } f \in V^{*}, \mathbf{v} \in V
$$

is a bilinear form.

Definition

A bilinear form function $f: V \times V \rightarrow \mathbb{F}$ over a real vector space V is called positive definite if for all $v \in V, v \neq 0$:

$$
f(v, v)>0
$$

Example

Which one is a positive definite bilinear form?

- $f(x, y)=x_{1} y_{1}-2 x_{1} y_{2}-2 x_{2} y_{1}+5 x_{2} y_{2}$
$\square f(x, y)=x_{1} y_{1}+2 x_{1} y_{2}+2 x_{2} y_{1}+3 x_{2} y_{2}$

Definition

A bilinear form function $f: V \times V \rightarrow \mathbb{F}$ over a real vector space V is called symmetric if for all $v, w \in V$:

$$
f(v, w)=f(w, v)
$$

Bilinear Form arises from a matrix

Theorem

Every bilinear form function $f: V \times V \rightarrow \mathbb{F}$ over a real vector space V arises from a matrix for all $v, w \in V$:

$$
f(v, w)=v^{T} A w
$$

Proof?

Definition

If V is a finite-dimensional vector space, $B=\left\{b_{1}, \ldots, b_{n}\right\}$ is a basis of V, and $f: V \times V \rightarrow \mathbb{F}$ be a bilinear form function the associated matrix A of f with respect to B is the matrix $[f]_{B} \in \mathbb{F}^{n \times n}$ whose (i, j)-entry is the value $f\left(b_{i}, b_{j}\right)$.

$$
\begin{gathered}
f(v, w)=v^{T} A w=v^{T}[f]_{B} W \\
{[f]_{\mathcal{B}}=\left(\begin{array}{ccc}
f\left(b_{1}, b_{1}\right) & \ldots & f\left(b_{1}, b_{n}\right) \\
\vdots & & \vdots \\
f\left(b_{n}, b_{1}\right) & \ldots & f\left(b_{n}, b_{n}\right)
\end{array}\right)}
\end{gathered}
$$

Associated Matrices

Note

The associated matrix changes if we use a different basis.

Example

For the bilinear form $f\left(\left[\begin{array}{l}a \\ b\end{array}\right],\left[\begin{array}{l}c \\ d\end{array}\right]\right)=2 a c+4 a d-b c$ on \mathbb{F}^{2}, find $[f]_{B}$ for basis $B=\left\{\left[\begin{array}{l}2 \\ 1\end{array}\right],\left[\begin{array}{c}-1 \\ 4\end{array}\right]\right\}$ and $[f]_{P}$ for basis $P=\left\{\left[\begin{array}{l}1 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 1\end{array}\right]\right\}$

Bilinear Form
 Over Complex Vector Space

Definition

Suppose V and W are vector spaces over the same field \mathbb{C}. Then a function $f: V \times W \rightarrow \mathbb{C}$ is called a bilinear form if it satisfies the following properties:
a) It is linear in its first argument:
i. $f\left(\mathbf{v}_{\mathbf{1}}+\mathbf{v}_{\mathbf{2}}, \mathbf{w}\right)=f\left(\mathbf{v}_{\mathbf{1}}, \mathbf{w}\right)+f\left(\mathbf{v}_{\mathbf{2}}, \mathbf{w}\right)$ and
ii. $f\left(\lambda \mathbf{v}_{\mathbf{1}}, \mathbf{w}\right)=\lambda f\left(\mathbf{v}_{\mathbf{1}}, \mathbf{w}\right)$ for all $\lambda \in \mathbb{C}, \mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}} \in V$, and $\mathbf{w} \in W$.
b) It is conjugate linear in its second argument:
i. $f\left(\mathbf{v}, \mathbf{w}_{\mathbf{1}}+\mathbf{w}_{\mathbf{2}}\right)=f\left(\mathbf{v}, \mathbf{w}_{\mathbf{1}}\right)+f\left(\mathbf{v}, \mathbf{w}_{2}\right)$ and
ii. $f\left(\mathbf{v}, \lambda \mathbf{w}_{\mathbf{1}}\right)=\bar{\lambda} f\left(\mathbf{v}, \mathbf{w}_{\mathbf{1}}\right)$ for all $\lambda \in \mathbb{C}, \mathbf{v} \in V$, and $\mathbf{w}_{\mathbf{1}}, \mathbf{w}_{\mathbf{2}} \in W$.

Bilinear forms on \mathbb{R}^{n}	Bilinear forms on \mathbb{C}^{n}
Linear in the first variable	Linear in the first variable
Linear in the second variable	Conjugate linear in the second variable

Inner product

Definition

An inner product is a positive-definite symmetric bilinear form.

- An inner product on V is a function $\langle\rangle:, V \times V \rightarrow \mathbb{R}$ such that $v, w \in V, c \in \mathbb{R}$:

1. $\langle v, v\rangle=0$ if and only if $v=0$.
2. $\langle w, v\rangle=\langle v, w\rangle$.
3. $\langle u+v, w\rangle=\langle u, w\rangle+\langle v, w\rangle$ for all $u, v, w \in V$.
4. $\langle c w, u\rangle=c\langle w, u\rangle$ for all $u, w \in V$ and $c \in \mathbb{R}$.
5. $\langle v, v\rangle \geq 0$ for all $v \in V$.

Inner Product

Why for bilinear form I wrote just two properties instead of four properties?

\square Using properties (2) and (4) and again (2)

$$
\langle w, c u\rangle=\langle c u, w\rangle=c\langle u, w\rangle=c\langle w, u\rangle
$$

\square Using properties (2), (3) and again (2)

$$
\langle w, u+v\rangle=\langle u+v, w\rangle=\langle u, w\rangle+\langle v, w\rangle=\langle w, u\rangle+\langle w, v\rangle
$$

1. $\langle v, v\rangle=0$ if and only if $v=0$.
2. $\langle w, v\rangle=\langle v, w\rangle$.
3. $\langle u+v, w\rangle=\langle u, w\rangle+\langle v, w\rangle$ for all $u, v, w \in V$.
4. $\langle c w, u\rangle=c\langle w, u\rangle$ for all $u, w \in V$ and $c \in \mathbb{R}$.
5. $\langle v, v\rangle \geq 0$ for all $v \in V$.

Inner Products

Note

- For $v \in V,\langle 0, v\rangle=0,\langle v, 0\rangle=0$.

Definition

Suppose that $\mathbb{F}=\mathbb{R}$ or $\mathbb{F}=\mathbb{C}$ and that V is a vector space over \mathbb{F}. Then an inner product on V is a function
$\langle\cdot, \cdot\rangle: V \times V \rightarrow \mathbb{F}$ such that the following three properties hold for all $c \in \mathbb{F}$ and all $\mathbf{v}, \mathbf{w}, \mathbf{x} \in V$:
a) $\langle\mathbf{v}, \mathbf{w}\rangle=\overline{\langle\mathbf{w}, \mathbf{v}\rangle}$
b) $\langle\mathrm{v}+c x, \mathrm{w}\rangle=\langle\mathrm{v}, \mathrm{w}\rangle+c\langle x, \mathrm{w}\rangle$
(conjugate symmetry)
c) $\langle\mathbf{v}, \mathbf{v}\rangle \geq 0$, with equality if and only if $\mathbf{v}=\mathbf{0}$. (pos. definiteness)

Inner Products for vectors

Note

\square The standard inner product between vectors is: $\left(x, y \in \mathbb{R}^{n}\right)$

$$
\langle x, y\rangle=x^{T} y=\sum x_{i} y_{i}
$$

\square The function $\langle\cdot \cdot\rangle: \mathbb{C}^{n} \times \mathbb{C}^{n} \rightarrow \mathbb{C}$ defined by

$$
\langle\mathrm{v}, \mathrm{w}\rangle=v^{*} \mathrm{w}=\sum_{i=1}^{n} \bar{v}_{i} w_{i}
$$

for all $\mathrm{v}, \mathrm{w} \in \mathbb{C}^{n}$ is an inner product on \mathbb{C}^{n}.

Inner Product for matrices

Note

\square The standard inner product between two matrices is: $\left(X, Y \in \mathbb{R}^{m \times n}\right)$

$$
\langle X, Y\rangle=\operatorname{trace}\left(X^{T} Y\right)=\sum_{i} \sum_{j} X_{i j} Y_{i j}
$$

Example

$$
U=\left[\begin{array}{ll}
1 & 2 \\
1 & 0
\end{array}\right], \quad V=\left[\begin{array}{cc}
1 & -1 \\
1 & 1
\end{array}\right]
$$

Note

\square Let $a<b$ be real numbers and let $C[a, b]$ be the vector space of continuous functions on the real interval $[a, b]$. The function $\langle\cdot \cdot\rangle: C[a, b] \times C[a, b] \rightarrow \mathbb{R}$ defined by

$$
\langle f, g\rangle=\int_{a}^{b} f(x) g(x) d x \quad \text { for all } \quad f, g \in C[a, b]
$$

is and inner product on $C[a, b]$.

Inner Product for polynomials

Note

\square For $p(x)$ and $q(x)$ with at most degree n :

$$
\langle p(x), q(x)\rangle=\mathrm{p}(0) \mathrm{q}(0)+\mathrm{p}(1) \mathrm{q}(1)+\cdots+\mathrm{p}(\mathrm{n}) \mathrm{q}(\mathrm{n})
$$

For $p(x)$ and $q(x):\langle p(x), q(x)\rangle=\mathrm{p}(0) \mathrm{q}(0)+\int_{-1}^{1} p^{\prime} q^{\prime}$
\square For $p(x)$ and $q(x):\langle p(x), q(x)\rangle=\int_{0}^{\infty} p(x) q(x) e^{-x} d x$

Inner product space

Definition
An inner product space is a finite-dimensional real or complex vector space V along with an inner product on V.

Euclidean Space Unitary Space

- Chapter 8: Kenneth Hoffman and Ray A. Kunze. Linear Algebra. PHI Learning, 2004.
- Chapter 6: Sheldon Axler, Linear Algebra Done Right, 2024.
- Chapter 1: David C. Lay, Steven R. Lay, and Judi J. McDonald. Linear Algebra and Its Applications. Pearson, 2016.
- Chapter 2: David Poole, Linear Algebra: A Modern Introduction. Cengage Learning, 2014.
- Chaper1: Gilbert Strang. Introduction to Linear Algebra. WellesleyCambridge Press, 2016.

